Home
Introduction
Course presentation
Understanding
AGI research approach
1.
Human sciences
1.1.
Brain Theories
1.2.
Consciousness
1.3.
Philosophy
1.4.
Jeff Hawkins’ Neocortex models
2.
Classical AI
2.1.
Natural Language Processing
2.2.
Knowledge Representations
2.3.
Programming Paradigms
2.4.
Cognitive Architectures
2.5.
State Space
3.
Deep Learning
3.1.
Probability and Statistics
3.2.
Machine Learning
3.3.
Generative models
3.4.
Different Neural Networks
3.5.
Unsupervised Learning
3.6.
Understanding DL
3.7.
Learning approaches
3.8.
Learning types
3.9.
NeuroSymbolic AI
3.10.
Natural Language Processing
Motivation for research
🇬🇧
Light
Rust
Coal
Navy
Ayu (default)
🇬🇧English
Artificial General Intelligence
Philosophy
\gdef \sam #1 {\mathrm{softargmax}(#1)}
\gdef \vect #1 {\boldsymbol{#1}}
\gdef \matr #1 {\boldsymbol{#1}}
\gdef \E {\mathbb{E}}
\gdef \V {\mathbb{V}}
\gdef \R {\mathbb{R}}
\gdef \N {\mathbb{N}}
\gdef \relu #1 {\texttt{ReLU}(#1)}
\gdef \D {\,\mathrm{d}}
\gdef \deriv #1 #2 {\frac{\D #1}{\D #2}}
\gdef \pd #1 #2 {\frac{\partial #1}{\partial #2}}
\gdef \set #1 {\left\lbrace #1 \right\rbrace}